Optimize Deep Learning: Tune PyTorch Models is an intermediate course for deep learning practitioners ready to move beyond off-the-shelf training and gain granular control over their models. Standard training loops can hide critical issues, leading to unstable performance and suboptimal results. This course empowers you to take full command of the training process using PyTorch Lightning.

Optimize Deep Learning: Tune PyTorch Models
5 days left! Gain next-level skills with Coursera Plus for $199 (regularly $399). Save now.

Optimize Deep Learning: Tune PyTorch Models
This course is part of LLM Optimization & Evaluation Specialization

Instructor: LearningMate
Included with
Recommended experience
What you'll learn
Use PyTorch Lightning to implement callbacks, diagnose instabilities, and optimize model performance.
Skills you'll gain
Details to know

Add to your LinkedIn profile
January 2026
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 3 modules in this course
This module introduces the core concepts of PyTorch Lightning that streamline deep learning development. You will learn why refactoring from raw PyTorch is essential for building scalable, production-ready models. You will get hands-on experience structuring your code into a LightningModule and using the Trainer to handle the engineering boilerplate, allowing you to focus purely on the science.
What's included
1 video1 reading2 assignments
In this module, you will learn to take full control of your training process using callbacks. You will discover how to implement automated rules for early stopping to prevent wasted computation and model checkpointing to save your best-performing models, including how to sync them with cloud storage for production-ready workflows.
What's included
1 video1 reading1 assignment1 ungraded lab
In this final module, you will step into the role of a deep learning diagnostician. You will learn to identify and fix common training instabilities like exploding and vanishing gradients by monitoring model internals. You will use these skills to debug a real training job and interact with an AI coach to sharpen your critical thinking.
What's included
2 videos1 reading2 assignments1 ungraded lab
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Explore more from Machine Learning
Why people choose Coursera for their career

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,
¹ Some assignments in this course are AI-graded. For these assignments, your data will be used in accordance with Coursera's Privacy Notice.








