• For Individuals
  • For Businesses
  • For Universities
  • For Governments
Coursera
  • Online DegreeExplore Bachelor’s & Master’s degrees
  • MasterTrack™Earn credit towards a Master’s degree
  • University CertificatesAdvance your career with graduate-level learning
Careers
  • Log In
  • Join for Free
    Coursera
    Chevron Left
    Back to Developing Data Products

    Learner Reviews & Feedback for Developing Data Products by Johns Hopkins University

    Filled StarFilled StarFilled StarFilled StarHalf Faded Star
    4.6
    stars
    2,256 ratings

    About the Course

    A data product is the production output from a statistical analysis. Data products automate complex analysis tasks or use technology to expand
    the utility of a data informed model, algorithm or inference. This course covers the basics of creating data products using Shiny, R packages,
    and interactive graphics. The course will focus on the statistical fundamentals of creating a data product that can be used to tell a story about
    data to a mass audience.
    ...

    Top reviews

    SS

    Mar 3, 2016

    Filled StarFilled StarFilled StarFilled StarFilled Star

    This is a great introduction to some of the many ways to present your data. It's probably the easiest course in the specialisation but shows off an impressive array of widgets and gadgets.

    RS

    Nov 18, 2018

    Filled StarFilled StarFilled StarFilled StarFilled Star

    This course was amazing, it could definetly be more deep in each of the subjects, but gives you so much practice in tools that are very useful in the day by day of a data scientist

    Filter by:

    1 - 25 of 423 Reviews for Developing Data Products

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Robert O

    •

    Jul 28, 2017

    Course content was helpful. Some confusion in assignment questions not aligning with what was covered in lectures where it would have helped to clarify that was intentional.

    Filled StarFilled StarStarStarStar

    By Paul R

    •

    Mar 13, 2019

    A disappointing end to the pre-capstone lectures, taking the foot off the machine learning gas from course 8 with a detour back to tools and yet another Rmarkdown lecture. This basically covers building shiny apps (needed for the capstone), leaflet (maps), making presentations in RStudio - then gets lost in R Packages and Swirlify which are not very useful here. Some of this is needed in the capstone, but this course can be compressed and combined with earlier courses and make room here for something more substantial at this late stage in the specialization.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Ashutosh B

    •

    Mar 13, 2016

    Although it is an easy course to pass, it is very important in content. It teaches the finishing moves, the ones you'll need after all your hard work. 5-star without doubt.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Idan R

    •

    Mar 9, 2017

    very helpful and teaching. learning practical tools for producting data products. examples in the course are not very complex, but give a very good intro for several tools.

    Filled StarFilled StarStarStarStar

    By Chuxing C

    •

    Apr 7, 2016

    Would like to use the time to learn more machine learning/predictive technique, etc.

    Filled StarStarStarStarStar

    By Leo C

    •

    Jul 18, 2020

    Too much on things that seem unnecessary, and too little on things that are needed. Also, this course is OLD now. They really should update it, do some more on plotly, but also ad dashboards with flesdashboard.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By David P

    •

    Dec 17, 2015

    The new platform is very versatile and easy to navigate. The page layout is much more clear. It is easy to navigate from course material to discussion boards.

    I like the Quiz format, including expanding the number of choices for the multiple choice selections, but the grading was confusing. For Quiz 3, some questions came back with multiple "Well Done" comments, even when I had not selected the answer for which I was being praised. I also was told I made errors on the same question.... and this was after I answered the question (Question 2, on R generic functions) the exact same as I had answered it when I took the course earlier this year.

    I was not a fan of not having to take a picture to submit work, so I am pleased that is no longer a requirement. I hope the typing pattern match is sufficient to affirm identity.

    I have one comment on content specific to this class. Week 3 content lacks relevancy to the project and data products in general. I agree that knowledge of R packages, classes, and methods is an important part of understanding R. I am not sure where that fits in the Data Science curriculum as a whole, though. Maybe expanding the curriculum to include a second, more advanced R class, with a project to write our own methods, build an R package, or do something with yhat. That would assign relevant work to reinforce the lectures.

    I would be happy to do further beta testing.

    DCP

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Henk S

    •

    Dec 6, 2015

    This is my comment as a beta tester:

    1) The changes to the lessons have changed the course for the better.

    2) If you want to be factually right than the statement that Bootstrap is a style should be changed on a few places. Bootstrap itself is not a style, although it is used as a style guide for the development of products. Obviously this is not a big issue and people that delve into will find the facts easily.

    Bootstrap is an HTML, CSS, and JS front-end framework with a strong support for themes which people also call styles. Many themes/styles are available to build responsive, mobile-first web sites. Bootstrap was created by a designer and a developer at Twitter in mid-2010 and was released to the public in August 2011. It has become one of the most popular front-end frameworks and open source projects in the world. Bootstrap has a few easy ways to quickly get started, each one appealing to a different skill level and use case.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Don M

    •

    Jul 17, 2019

    This is an excellent course. It's not as hard as the last three in the sequence but there is plenty to experiment with, and I was very pleased to see that we learned how to build packages, methods, and classes along the way, created an app, and even delved into building our own Swirl tutorials. While not strictly part of creating a data product, those are great things to have on the resume. I was pleased to see the capabilities of Plotly and will certainly use that. As with all of these courses, you must pay close attention to the marking rubric to get full marks. Onward to the Capstone!

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Dheeraj A

    •

    Feb 7, 2016

    After several back to back dense, high paced, steep learning courses in the specialization, this course is a welcome break. Its light, interactive and has a certain calmness about it. It touches several topics like shiny, manipulate, googlevis and plotly. As someone who has taken all courses in the specialization, I always wondered, how do I show my analysis to someone in an enterprise production environment and not as offline pdfs generated from rmd files. This course attempts to answer that question.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Pablo A

    •

    Apr 5, 2017

    Excellent, relevant, and updated content and guidance through videos and assignments. If you work hard and use material from previous courses in the specialization you can start to feel how you are getting somewhere. With the technology we learned in this course I feel I can now provide usable products that provide interactivity and promote better understanding of complex data sets.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By João F

    •

    Mar 16, 2019

    Excellent course (like the previous 8 in the specialization) and very useful for anyone working with data and involved in data storytelling. Brian (the teacher) does an awesome job explaining the concepts and how the functions and scripts in R work and interact with each other to bring about shiny apps and other visualizations. A big "Thank you!" to everyone who created this course!

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By José A R N

    •

    Aug 25, 2017

    My name is Jose Antonio from Brazil. I am looking for a new Data Scientist career (https://www.linkedin.com/in/joseantonio11)

    I did this course to get new knowledge about Big Data and better understand the technology and your practical applications.

    The course was excellent and the classes well taught by teachers.

    Congratulations to Coursera team and Instructors.

    Regards.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By David S

    •

    Feb 6, 2016

    This course is cooler than the title sounds. The emphasis is on developing data apps with Shiny. In my case, I had only part of a weekend to work hard on the course project, yet I was able to make a nifty little data app that even impressed a potential employer. Leave plenty of time for brainstorming ideas for the course project and you'll find it very rewarding too.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Kalle H

    •

    Dec 7, 2017

    Very good. Could go deeper in some areas but generally a good introduction to Rmarkdown, knitr, shiny and similar system and provides informtion of where to get further information where needed. The coursework was generally good but could be more demanding. considering the limited time scale this seems to be about right anyways.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Francisco A O A

    •

    Feb 8, 2016

    Very practice oriented. After completing the Data Science Specialization courses with the course of Developing Data Products, I finally understand how important and useful R Programming is as a tool for research, data managing and inference making and for communicating results. Excellent way to crown the specialization's courses.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By jessica c f

    •

    Jun 16, 2019

    This is the ninth course of a series of nine courses. The creation of the apps and the didactics is very good, I just needed to do the first course of the series to get to work better the fundamentals, since this course is a bit advanced.

    I loved the experience and everything I learned, I would say it is well worth it!

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Richard I C

    •

    Feb 6, 2016

    The material is great; and learning to use Shiny and creating an application is a lot of fun.

    The only complaint I have with this course was it being put into the new Coursera platform. I felt like I was beta testing the new platform and that distracted from focusing on the course and the assignments within it.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Mehmet İ

    •

    Jul 14, 2022

    Excellent course. In course very useful packages of R being introduced. Samples and explanations are really helping. Lessons are very clear and specific. I think I will turn back time to time and refresh my memory for some operations that has been taught here. Lecturer Brian Caffo is a great teacher I think.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Matti N

    •

    May 2, 2018

    I think GoogleVis, Plotly & LeafLet are something that you should learn already on the first courses of this specialization. Not really sure why making presentations in R would make sense given that we have Powerpoint, Keynote and Canva available to create stunning presentations for our data products.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Chigrinov S

    •

    Feb 7, 2016

    For me the course was really interesting. Yes, all topics are not covered in deep details - but lecturers show what technologies exist and for what purposes. So if you're interested in some of them - it is up to you to discover more (useful links are included). Really nice and useful overview.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Nirav D

    •

    Apr 3, 2016

    This is a very useful course in the Data Science Specialization that teaches us how to present the results of our data analysis using Shiny, Slidify and other R based data presentation tools. It also introduces open source charting APIs that we could use in our data analysis applications.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Samuel Q

    •

    Nov 22, 2018

    Really enjoyed this course. But you can only get as much as you put into it. A lot of students end up doing pretty mediocre apps that contain just enough to pass but never get creative. If you want to get as much as you can, then put some effort and create a nice app/presentations.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Pam M

    •

    May 19, 2016

    Really enjoyed learning how to build a Shiny App, and see a lot of use for this in my work environment. The Slidify product was not as useful - after 3 months of working on the project, I moved from Slidify to RPres, and was able to complete the project in very little time.

    Filled StarFilled StarFilled StarFilled StarFilled Star

    By Qian N

    •

    May 30, 2017

    The course introduced some of the cool features in Shiny App. and other plot packages in R. Skills obtained can be used to showcase your analysis result, conduct more in-depth data exploration, and potentially used to build writing/analysis samples in job application.

    • Chevron Left
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • ...
    • 17
    • Chevron Right

    Coursera Footer

    Technical Skills

    • ChatGPT
    • Coding
    • Computer Science
    • Cybersecurity
    • DevOps
    • Ethical Hacking
    • Generative AI
    • Java Programming
    • Python
    • Web Development

    Analytical Skills

    • Artificial Intelligence
    • Big Data
    • Business Analysis
    • Data Analytics
    • Data Science
    • Financial Modeling
    • Machine Learning
    • Microsoft Excel
    • Microsoft Power BI
    • SQL

    Business Skills

    • Accounting
    • Digital Marketing
    • E-commerce
    • Finance
    • Google
    • Graphic Design
    • IBM
    • Marketing
    • Project Management
    • Social Media Marketing

    Career Resources

    • Essential IT Certifications
    • High-Income Skills to Learn
    • How to Get a PMP Certification
    • How to Learn Artificial Intelligence
    • Popular Cybersecurity Certifications
    • Popular Data Analytics Certifications
    • What Does a Data Analyst Do?
    • Career Development Resources
    • Career Aptitude Test
    • Share your Coursera Learning Story

    Coursera

    • About
    • What We Offer
    • Leadership
    • Careers
    • Catalog
    • Coursera Plus
    • Professional Certificates
    • MasterTrack® Certificates
    • Degrees
    • For Enterprise
    • For Government
    • For Campus
    • Become a Partner
    • Social Impact
    • Free Courses
    • ECTS Credit Recommendations

    Community

    • Learners
    • Partners
    • Beta Testers
    • Blog
    • The Coursera Podcast
    • Tech Blog
    • Teaching Center

    More

    • Press
    • Investors
    • Terms
    • Privacy
    • Help
    • Accessibility
    • Contact
    • Articles
    • Directory
    • Affiliates
    • Modern Slavery Statement
    • Do Not Sell/Share
    Learn Anywhere
    Download on the App Store
    Get it on Google Play
    Logo of Certified B Corporation
    © 2025 Coursera Inc. All rights reserved.
    • Coursera Facebook
    • Coursera Linkedin
    • Coursera Twitter
    • Coursera YouTube
    • Coursera Instagram
    • Coursera TikTok
    Coursera

    Sign up

    Learn on your own time from top universities and businesses.

    ​
    ​
    Between 8 and 72 characters
    Your password is hidden
    ​

    or

    Already on Coursera?


    Having trouble logging in? Learner help center

    This site is protected by reCAPTCHA Enterprise and the Google Privacy Policy and Terms of Service apply.